Kamis, 20 Maret 2014

TEKNIK SAMPLING

Teknik sampling adalah merupakan teknik pengambilan sampel. Untuk sampel yang akan digunakan dalam penelitian, terdapat berbagai teknik sampling yang dikelompokkan menjadi dua yaitu Probability sampling dan Nonprobability sampling (Sugiyono,2011).
Probability Sampling
Probability sampling adalah merupakan teknik pengambilan sampel yang memberikan peluang yang sama bagi setiap unsur (anggota) populasi untuk dipilih untuk menjadi anggota sampel. Teknik ini antara lain sebagai berikut
TEKNIK SAMPLING PROBABILITAS (TEKNIK SAMPLING RANDOM)
Sampel probabilitas atau disebut juga sampel random (sampel acak) adalah sampel yang pengambilannya berlandaskan pada prinsip teori peluang, yakni prinsip memberikan peluang yang sama kepada seluruh unit populasi untuk dipilih sebagai sampel. Sampel probabilitas diambil dengan menggunakan teknik sampling probabilitas atau teknik sampling random. Teknik sampling probalitas terdiri dari beberapa teknik sampling sebagai berikut:

a). Teknik Sampling Random Sederhana (Simple Random Sampling)
Sampel acak sederhana adalah sebuah sampel yang diambil sedemikian rupa sehingga setiap unit penelitian atau satuan elementer dari populasi mempunyai kesempatan yang sama untuk dipilih sebagai sampel. Peluang yang dimiliki oleh setiap unit penelitian untuk dipilh sebagai sampel sebesar n/N, yakni ukuran sampel yang dikehendaki dibagi dengan ukuran populasi. Dalam menggunakan Teknik Sampling Random Sederhana ini ada beberapa syarat yang harus dipenuhi, antara lain (Singarimbun dan Effendy, 1989):
  1. Harus tersedia kerangka sampling atau memungkinkan untuk dibuatkan kerangka samplingnya (dalam kerangka sampling tidak boleh ada unsur sampel yang dihitung dua kali atau lebih).
  1. Sifat populasinya harus homogen, jika tidak, kemungkinan akan terjadi bias.
  1. Ukuran populasinya tidak tak terbatas, artinya harus pasti berapa ukuran populasinya.
  1. Keadaan populasinya tidak terlalu tersebar secara geografis.
Teknis pelaksanaannya ada dua cara, yakni:
1.   Dengan mengundi unsur-unsur penelitian atau satuan-satuan elementer dalam populasi. Langkah awal yang perlu dilakukan adalah menyusun semua unit penelitian atau unit elementer ke dalam kerangka sampling, mulai dari nomor terkecil hingga nomor ke-n (tergantung berapa besar ukuran populasinya). Selanjutnya masing-masing nomor unsur populasi itu ditulsikan dalam secarik kertas, digulung, dan dimasukkan ke dalam sebuah kotak atau toples. Lalu lakukan pengocokan secara merata, dan ambil sejumlah gulungan kertas tersebut sebanyak ukuran sampel yang dikehendaki. Nomor-nomor yang terambil itu menjadi unit elementer yang terpilih sebagai sampel. Pengundian juga dapat dilakukan seperti halnya ibu-ibu anggota kelompok arisan menentukan pemenang arisannya. Gulungan kertas yang di dalamnya sudah berisi nomor unit elementer, dimasukkan ke dalam toples yang diberi tutup dengan lubang sebesar kira-kira dapat dilalui oleh setiap gulungan kertas yang ada di dalamnya. Lalu kocok berulang-ulang hingga keluar sejumlah gulungan kertas sesuai dengan ukuran sampel yang direncanakan. Penggunaan cara ini (cara pengundian) seringkali tidak praktis, terutama apabila ukuran populasinya relatif besar, sebab: pertama, hampir tidak mungkin kita dapat melakukan pengocokan secara saksama dan merata seluruh gulungan kertas undian; dan kedua, ada kecenderungan kita untuk tergoda memilih angka-angka tertentu. Dalam keadaan yang demikian, gunakan teknik kedua, yakni dengan mengundi Tabel Angka Random.
2.  Dengan menggunakan Tabel Angka Random. Cara ini dipilih karena selain meringankan pekerjaan, juga lebih memberikan jaminan yang lebih besar bahwa setiap unit elementer mempunyai peluang yang sama untuk terpilih sebagai sampel. Caranya adalah sebagai berikut: misalnya, dari satuan elementer dlam populasi (N) yang besarnya 500 orang, akan dipilih 50 satuan elementer sebagai sampel (n). Bilangan 500 ini terdiri dari tiga dijit (digit), oleh karena itu dalam kerangka sampling satuan elementernya diberi nomor mulai dari 001 sampai 500. Selanjutnya lihat Tabel Angka Random atau Tabel Bilangan Random yang selalu ada pada lampiran buku-buku metodologi penelitian atau buku-buku metode statistika. Karena angka-angka yang yang terdapat dalam Tabel Bilangan Random itu disusun secara kebetulan (randomly assorted), maka pemakai tabel tersebut dapat mulai melihatnya dari baris dan kolom mana saja. Di samping itu, ia dapat juga mengikutinya ke arah mana saja. Penentuan angka pertama dapat dilakukan, misalnya, dengan cara menjatuhkan pensil dengan mata pensil mengarah ke bawah pada lembaran kertas yang di dalamnya terdapat tabel bilangan random yang kita gunakan. Angka random yang terkena oleh mata pensil tadi adalah unsur sampel pertama yang kita pilih. Selanjutnya, kita dapat menentukan unsur sampel lainnya dengan cara berjalan ke atas mengikuti kolom yang sama, atau ke samping mengikuti baris, ke bawah mengikuti kolom, atau cara apa saja yang dianggap mudah.


b). Teknik Sampling Random Sistematik (Systematic Random Sampling)
Apabila ukuran populasinya sangat besar, hingga tidak memungkinkan dilakukan pemilihan sampel dengan cara pengundian, maka teknik sampling random sederhana tidaklah tepat untuk digunakan. Dalam keadaan populasi yang demikian, gunakanlah teknik sampling random sistematik. Persyaratan yang harus dipenuhi agar teknik sampling ini dapat digunakan, sama dengan persyaratan untuk sampel random sederhana, yakni tersedianya kerangka sampling (ukuran populasinya diketahui dengan pasti), dan populasinya mempunyai pola beraturan yang memungkinkan untuk diberikan nomor urut serta bersifat homogen.
Cara penggunaan teknik sampling random sistematik ini mirip dengan cara sampling random sederhana. Bedanya, pada teknik sampling sistematik perandoman atau pengundian hanya dilakukan satu kali, yakni ketika menentukan unsur pertama dari sampling yang akan diambil. Penentuan unsur sampling selanjutnya ditempuh dengan cara memanfaatkan interval sampel. Interval sampel adalah angka yang menunjukkan jarak antara nomor-nomor urut yang terdapat dalam kerangka sampling yang akan dijadikan patokan dalam menentukan atau memilih unsur-unsur sampling kedua dan seterusnya hingga unsur ke-n. Interval sampel biasanya dilambangkan dengan huruf k.
Interval sampel atau juga disebut sampling rasio diperoleh dengan cara membagi ukuran populasi dengan ukuran sampel yang dikehendaki (N/n). Misalnya, dari populasi (N) berukuran 500 kita akan mengambil sampel (n) berkuran 50, maka interval samplingnya adalah 500/50=10 atau k =10. Andaikan yang terpilih sebagai unsur sampling pertama adalah satuan elementer yang bernomor s, maka penentuan unsur-unsur sampel berikutnya adalah:
  • Unsur pertama = s
  • Unsur kedua = s + k
  • Unsur ketiga = s + 2k
  • Unsur keempat = s + 3k, dan seterusnya hingga unsur ke-n.
Untuk lebih jelasnya, di bawah ini diberikan contoh konkret:
Misalnya ukuran populasinya 500 (N=500) dan ukuran sampel yang akan diambil sebesar 50 (n=50), maka pasti k = 10. Andaikan saja unsur sampel pertama yang terpilih adalah nomor urut 005, maka unsur-unsur selanjunya yang harus diambil adalah nomor 015, 025, 035, 045, 055, 065, 075, dan seterusnya dengan berpatokan pada penambahan angka 10 dari nomor urut terakhir.


c). Teknik Sampling Random Berstrata (Stratified Random Sampling)
Teknik sampling ini digunakan apabila populasinya tidak homogen (heterogen). Makin heterogen suatu populasi, makin besar pula perbedaan sifat-sifat antara lapisan tersebut. Padahal, sebagaimana telah diungkapkan di atas, presisi dan tingkat kerepresentatifan sampel yang diambil dari suatu populasi antara lain dipengaruhi oleh derajat keseragaman (tingkat homogenitas) populasi yang bersangkutan. Untuk dapat menggambarkan secara tepat tentang sifat-sifat populasi yang heterogen, maka populasi yang bersangkutan harus dibagi-bagi kedalam lapisan-lapisan (strata) yang seragam atau homogen, dan dari setiap strata dapat diambil sampel secara random (acak).
Untuk dapat menggunakan teknik sampling random strata, ada beberapa syarat yang harus dipenuhi, antara lain (Singarimbun dan Effendi, 1989:162-163):
  1. Harus ada kriteria yang jelas yang akan dipergunakan sebagai dasar untuk menstratifikasi populasi ke dalam lapisan-lapisan. Sebagai contoh, populasi penelitian Anda adalah seluruh mahasiswa Unpad. Dalam kenyataannya karakteristik mahasiswa Unpad tidak sama (tidak homogen) sebab di Unpad terdapat program pendidikan jenjang D3, S1, S2, dan S3 yang tentu saja karakteristik (terutama karakteristik akademisnya) berbeda-beda. Maka dalam keadaan populasi yang demikian, mahasiswa Unpad sebagai populasi harus dibagi kedalam strata (subpopulasi) mahasiswa D3, mahasiswa S1, mahasiswa S2, dan mahasiswa S3. Secara teoretis, yang dapat dijadikan kriteria untuk pembagian strata itu ialah variabel-variabel yang akan diteliti atau variabel-variabel yang menurut peneliti mempunyai hubungan yang erat dengan variabel-variabel yang hendak diteliti itu. Misalnya, tingkat motivasi belajar mahasiswa erat kaitannya dengan jenjang pendidikan yang diikutinya. Jadi, dalam penelitian tentang motivasi belajar mahasiswa (misalnya), jenjang pendidikan dijadikan dasar dalam menentukan strata populasi.
  1. Harus ada data pendahuluan dari populasi mengenai kriteria yang dipergunakan untuk menstratifikasi. Misalnya, data mengenai pembagian jenjang pendidikan pada mahasiswa Unpad didasarkan pada kenyataan bahwa di Unpad memang terdapat berbagai jenjang pendidikan.
  1. Jumlah satuan elementer dari setiap strata (ukuran setiap subpopulasi) harus diketahui dengan pasti. Hal ini diperlukan agar peneliti dapat membuat kerangka sampling untuk setiap subpopulasi atau strata yang akan dijadikan sumber dalam menentukan sampel atau responden. (Harap dicatat, bahwa teknik sampling random strata ini baru efektif dalam menentukan ukuran sampel yang harus diambil dari setiap strata dan belum mampu menentukan siapa saja sampel yang harus diambil untuk dijadikan responden penelitian). Untuk menentukan saampel sasaran atau responden masih perlu dilanjutkan dengan menggunakan teknik sampling random sederhana atau teknik sampling random sistematik, setelah sebelumnya dibuatkan kerangka sampling untuk setiap subpopulasinya.
Sampel strata terdiri dari dua macam, yakni sampel strata proporsional dan sampel strata disproporsional. Teknik sampling random strata proporsional digunakan apabila proporsi ukuran subpopulasi atau jumlah satuan elementer dalam setiap strata relatif seimbang atau relatif sama besar. Dalam sampel strata proporsional, dari setiap strata diambil sampel yang sebanding dengan besar setiap strata dengan berpatokan pada pecahan sampling (sampling fraction) yang sama yang digunakan.
Pecahan sampling adalah angka yang menunjukkan persentase ukuran sampel yang akan diambil dari ukuran populasi tertentu. Sebagai contoh, jumlah keseluruhan mahasiswa Unpad ada 25.000 orang, sehingga ukuran populasinya 25.000. Berdasarkan perhitungan tertentu, misalnya kita menggunakan Rumus Slovin, sampel yang harus diambil sebesar 2.500 orang mahasiswa, maka pecahan samplingnya adalah 0,10 (10%) yang diperoleh dengan cara membagi ukuran sampel yang dikehendaki dengan ukuran populasinya (n/N). Dengan demikian, maka dari setiap lapisan populasi (strata) harus diambil sampel sebesar 10 % sehingga akhirnya diperoleh ukuran sampel secara keseluruhan yang merepresentasikan populasi. Untuk lebih jelasnya, perhatikan tabel di bawah ini.


Tabel 1Sampel Berstrata Proporsional untuk Penelitian Motivasi Belajar di Kalangan Mahasiswa Universitas Padjadjaran

Jenjang Pendidikan
Populasi
Ukuran % Dalam Populasi
Pecahan Sampling
Sampel
N % dalam sampel
D3
10.000
40%
0,10
1.000
40%
S1
8.000
32%
0,10
800
32%
S2
5.000
20%
0,10
500
20%
S3
2.000
8%
0,10
200
8%

25.000
100%

2.500
100%

Keterangan:
  • Ditentukan ukuran sampel 2.500
  • Pecahan sampling 2.500/25.000 = 0,10
  • Setiap jenjang pendidikan diwakili dalam sampel proporsinya dalam populasi.
Penggunaan Teknik Sampling Random Strata Proporsional agak kurang tepat jika proporsi ukuran subpopulasinya (jumlah satuan elementer pada strata) tidak seimbang, ada yang jumlahnya besar ada pula yang jumlahnya kecil, sehingga kalau digunakan teknik sampling strata proporsional dapat kejadian ukuran subpopulasinya sama dengan ukuran sampelnya. Padahal, jika ukuran sampelnya sama dengan ukuran populasinya (total sampling atau sensus) maka data yang diperoleh dari sampel tersebut tidak bisa diolah atau dianalisis dengan menggunakan analisis statistik inferensial. Oleh karena itu, dalam keadaan populasi yang demikian, gunakanlah Teknik Sampling Random Strata Disproporsional.
Pada Sampel Strtata Disproporsional, ukuran sampel yang diambil dari setiap subpopulasi (strata) sama besarnya, yang berbeda adalah pecahan samplingnya. Satu hal yang perludicatat dan diingat, jika menggunakan teknik sampling ini, nanti pada waktu analisis data, data yang diperoleh dari sampel masing-masing strata harus dikalikan dengan bobot yang disesuaikan pada strata tersebut.
d). Teknik Sampling Random Klaster (Cluster Random Sampling)
Teknik ini digunakan apabila ukuran populasinya tidak diketahui dengan pasti, sehingga tidak memungkinkan untuk dibuatkan kerangka samplingnya, dan keberadaannya tersebar secara geografis atau terhimpun dalam klaster-klaster yang berbeda-beda. Misalnya, populasi puah penelitian kita adalah seluruh murid Sekolah Dasar (SD) yang ada di Wilayah Kota Bandung. Tidak mungkin kita dapat menghimpun semua data anak SD dalam sebuah daftar yang akurat, kalaupun mungkin, pasti daftar itu akan sangat panjang dan memerlukan waktu serta biaya yang tidak sedikit untuk menyusunnya. Maka kelompok siswa SD itu kita buat berdasarkan nama sekolahnya. Kelompok anak SD itu disebut klaster. Klaster dapat berupa sekolah, kelas, kecamatan, desa, kelurahan, RW, RT, dan sebagainya. Apabila klaster itu bersifat wilayah geografis yang kecil, maka pengambilan sampelnya dapat dilakukan satu tahap (simple cluster sampling). Misalnya, wilayah penelitian kita ada di Kelurahan Gunung Sampah, yang terdiri dari 10 RW, maka kita dapat memilih beberapa RW secara random untuk dijadikan wilayah penelitian dengan konsekuensi seluruh penduduk sasaran di RW itu harus dijadikan sampel (responden).
Akan tetapi jika klasternya besar atau wilayah geografisnya besar, maka pengambilan sampel tidak cukup hanya satu tahap, melainkan harus beberapa tahap. Dalam keadaan yang demikian gunakanlah teknik sampling klaster banyak tahap (multistage cluster sampling). Misalnya kita akan meneliti pendapat seluruh ibu rumah tangga yang ada di wilayah Kota Bandung tentang konversi bahan bakar minyak tanah ke gas elpiji. Populasi penelitiannya adalah seluruh ibu rumah tangga yang ada di Kota Bandung. Kota Bandung kita bagi dulu ke dalam Wilayah Bandung Timur, Bandung, Barat, Bandung Selatan, dan Bandung Utara. Dari setiap wilayah itu kita jabarkan lagi pada kecamatan-kecamatan, lalu ambil secara random, misalnya, dua kecamatan dari setiap wilayah sehingga diperoleh delapan kecamatan. Apabila kita berhenti sampai di sini, maka seluruh ibu rumah tangga yang berdomisi di delapan kecamatan terpilih itu adalah sampel penelitian kita. Tetapi jika kita merasa jumlahnya masih terlalu besar, maka kita boleh menjabarkan wilayah kecamatan terpilih itu menjadi kelurahan-kelurahan, sehingga wilayah kecamatan tadi kita jadikan populasi sampling. Dari situ secara random, misalnya, kita ambil dua kelurahan dri setiap kecamatan terpilih, sehingga kita memiliki 16 kelurahan sebagai wilayah penelitian dengan konsekuensi seluruh ibu rumah tangga di 16 kelurahan itu harus dijadikan responden. Jika dirasakan masih terlalu banyak jumlahnya, kita diperbolehkan untuk menurunkan lagi wilayah penelitian pada wilayah yang lebih kecil, misalnya RW, dan seterusnya dengan cara yang sama.
Daftar Referensi :
  • Jalaluddin Rakhmat, 1995, Metode Penelitian Komunikasi, Bandung: P.T. Remaja Rosdakarya.
  • Arthur Asa Berger, 2000, Media and Communication Research Methods, Thousand Oaks, London, New Delhi: Sage Publications, Inc.
  •  Bridget Somekh and Cathy Lewin, 2005, ResearchMethods in The Social Sciences, London, Thousand Oaks, New Delhi: Sage Publications, Inc.
  •  Masri Singarimbun dan Sofian Effendi, 1989, Metode Penelitian Survai, Jakarta: LP3ES.
  •  Bambang Prasetyo dan Lina Miftahul Jannah, 2005,Metode Penelitian Kuantitatif: Teori dan Aplikasi, Jakarta: P.T. Radjagrafindo Persada.
  •  Rachmat Kriyantono, 2006, Teknik Praktis Riset Komunikasi, Jakarta: Kencana Prenada Media Group.
  • http://skripsimahasiswa.blogspot.com/2009/08/populasi-dan-teknik-sampling.html

  • http://abdulsalamserbakomunikasi.blogspot.com/2012/09/teknik-sampling-probabilitas-teknik.html
  • http://sugithewae.wordpress.com/2012/12/08/teknik-sampling/

Tidak ada komentar:

Posting Komentar